Dr. Marna Yandeau-Nelson

People
Assistant Professor

Dr. Yandeau-Nelson received her B.S. in Biology from Drake University in 1998 and her Ph.D. in Genetics in 2005 from Iowa State University. Her graduate thesis work characterized meiotic recombination in maize. As a postdoctoral scholar at Penn State University from 2005-2008, her work focused on the genetics of starch biosynthesis in maize.  In 2009, she returned to Iowa State University as an Associate Scientist and Graduate Faculty in the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, and the NSF-Engineering Research Center for Biorenewable Chemicals (CBiRC).  She joined the faculty of the Genetics, Development, and Cell Biology Department in 2014.

Research Description

My research interests integrate classical and molecular genetics with biochemical, metabolomic and computational approaches to study the biosynthetic and regulatory genetic networks of metabolic traits, to increase both the fundamental knowledge of metabolism and to use that knowledge for practical applications.

I. Understanding the genetic network of plant cuticle lipids and their protective properties against environmental stresses: My group is using the stigmatic silks of maize as the model system to dissect the genetic and metabolic networks responsible for the synthesis of plant cuticle lipids, which are derived from fatty acids and accumulate on the aerial surfaces of plants. We are using the cuticle lipid metabolome as the model to study how the organism adapts and protects plant surfaces from environmental stresses. This work aims to reveal unique mechanisms that produce the distinctive surface chemistries that plants utilize to gain protection from environmental stresses. Based on the chemical similarity of surface lipid constituents to components of petroleum, this work has potential applications in bioengineering these networks to produce advance biofuels in heterologous systems (e.g. algae). Project website

II. Harnessing natural metabolic pathways for the production of biorenewable compounds: The ISU-based, NSF-funded Center for Biorenewable Chemicals (CBiRC) is leading the emerging bio-based chemical field by developing a flexible platform that combines biological and chemical catalysis to produce precursors for chemicals. Within the context of CBiRC, we are addressing how the fatty acid biosynthetic pathway can be harnessed in genetically tractable microbes to produce a variety of precursors for the emerging biorenewable chemicals industry. In a broader context, we are employing forward genetic approaches to study the regulation of fatty acid synthesis, and we are particularly interested in the “non-obvious” genetic determinants, and variants thereof, that determine fatty acid production.

Selected Publications:

  • Garg S, Rizhsky L, Jin H, Yu X, Jing F, Yandeau-Nelson MD, Nikolau BJ (2016) Microbial production of bi-functional molecules by diversification of the fatty acid pathway.  Metabolic Engineering  35: 9-20.
  • Yandeau-Nelson MD*, Lauter N, Zabotina OA (2015) Advances in metabolomic applications in plant genetics and breeding.  CAB Reviews. 10: 040  doi: 10.1079/PAVSNNR201510040  *Corresponding author.
  • Korte A, Yandeau-Nelson MD, Nikolau BJ, Lee Y-J (2015) Sub-cellular Level Resolution MALDI-MS Imaging of Maize Leaf Metabolites by MALDI-Linear Ion Trap- Orbitrap Mass Spectrometer. Anal Bioanal Chem 407: 2301-2309 PMID 25618761.
  • Muszynski MG & Yandeau-Nelson MD. (2014) Molecular Genetics of Bioenergy Traits. In: Goldman SL & Kole C (eds) Compendium of Bioenergy Plants: Corn. CRC Press, 169-197.
  • Jing F, Cantu DC, Tvaruzkova J, Chipman J, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ(2011)Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.BMC Biochem 12:44 doi:10.1186/1471-2091-12-44.
  • Yandeau-Nelson MD, Laurens L, Shi Z, Xia H, Smith AM, Guiltinan MJ (2011) Starch Branching Enzyme IIa is required for proper diurnal cycling of starch in leaves of Zea mays. Plant Physiol,156: 479-490.
  • Xia H, Yandeau-Nelson M, Thompson DB, Guiltinan MJ (2011) Deficiency of maize starch-branching enzyme I results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC Plant Biol, 11:95.
  • Perera MA, Qin W, Yandeau-Nelson M, Fan L, Dixon P, Nikolau BJ (2010) Biological origins of normal-chain hydrocarbons: a pathway model based on cuticular wax analyses of maize silks. Plant J, 64: 618-632.
Area of Expertise: 
Functional Genomics
Education: 
PhD, Genetics, Iowa State University, 2005
Contact
515-294-1079
4138 BRL
Ames
Iowa
50011-